Recherchez une offre d'emploi
Post-Doctoral Research Visit F - M Stochastic Modelling Of Dynamical Resource Allocation Analysis And Inference For Single-Cell Data H/F - 38
Description du poste
-
INRIA
-
Montbonnot-Saint-Martin - 38
-
CDD
-
Publié le 6 Octobre 2025
A propos d'Inria
Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'eorce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.Post-Doctoral Research Visit F/M Stochastic modelling of dynamical resource allocation, analysis and inference for single-cell data
Le descriptif de l'offre ci-dessous est en Anglais
Type de contrat : CDD
Contrat renouvelable : Oui
Niveau de diplôme exigé : Thèse ou équivalent
Fonction : Post-Doctorant
A propos du centre ou de la direction fonctionnelle
The Centre Inria de l'Université de Grenoble groups together almost 600 people in 26 research teams and 9 research support departments.
Staff is present on three campuses in Grenoble, in close collaboration with other research and higher education institutions (Université Grenoble Alpes, CNRS, CEA, INRAE, ...), but also with key economic players in the area.
The Centre Inria de l'Université Grenoble Alpes is active in the fields of high-performance computing, verification and embedded systems, modeling of the environment at multiple levels, and data science and artificial intelligence. The center is a top-level scientific institute with an extensive network of international collaborations in Europe and the rest of the world.
Contexte et atouts du poste
The postdoctoral project will be carried out in the project-team MICROCOSME at Inria Grenoble - Rhône-Alpes under the joint supervision of Aline Marguet, Eugenio Cinquemani and Hidde de Jong within the framework of the ARBOREAL ANR project.
MICROCOSME is an interdisciplinary team that includes applied mathematicians, engineers, computer scientists, biologists as well as experimentalists from the biology/physics team BIOP of the Université Grenoble-Alpes.
Mission confiée
Gaining an understanding of the cellular processes underlying bacterial growth is crucial for fundamental research in biology as well as for applications in biotechnology, health, and environmental technology. New experimental technologies have been developed
to monitor growth and gene expression at the single-cell level, opening the path to the exploration of the origins of variability in growth phenotypes within a population of bacterial cells. So far, the data obtained from these technological breakthroughs have been exploited only in part. In particular, appropriate mathematical models and methods to relate single-cell gene expression data with the emergence of growth variabilityin a population are rare [1].
The ARBOREAL ANR project aims at developing a new mathematical framework for the analysis of growth variability from single-cell data, by combining structured branching processes [2, 3] with models of bacterial growth [4] at the single-cell level. We will obtain a
new class of stochastic individual-based models, called Branching Resource allocation Processes (BRP), that will enable investigation of the variability of growth phenotypes in a proliferating microbial population in terms of the variability of physiological and cell division processes. The development of the BRP framework will entail modelling, analysis, and inference, and will exploit microfluidics experiments comprising single-cell measurements of growth and expression levels of ribosomes and enzymes in the model organism Escherichia coli [5].
The proposed postdoc position involves the numerical simulation, analysis and inference of branching resource allocation processes and the application of this new framework to existing single-cell datasets in the team to study the onset of growth variability in bacterial
populations.
Principales activités
Using a variety of mathematical tools and algorithmic approaches (Continuous-Time Markov chains, Mixed-Effects modelling, Branching processes, stochastic simulation) as well as single-cell gene expression datasets, we will address several of the following points:
- Analyse the new BRP models (asymptotic behavior, comparison of population and lineage dynamics, compute the large population limit and compare with existing population-average resource allocation models).
- Develop numerical simulation tools for the BRP models.
- Develop analytical (least-squares, moment fitting, etc.) methods and/or sampling-based (MCMC) algorithms for the identification of unknown BRP model parameters from time-course, single-cell (growth and gene expression) measurements over cell lineages.
- Develop methods for estimation of unobserved intracellular processes from the data.Implement methods in Python or Julia.
- Use the BRP framework to analyse single-cell E. coli datasets from our laboratory [5]and other datasets to relate growth phenotypes on the population level to resourceallocation strategies on the single-cell level.
Bibliography.
[1] Thomas, P., G. Terradot, V. Danos, and A. Y. Wei e, Sources, propagation and consequences of stochasticity in cellular growth. Nat Commun 9:4528, 2018.
[2] A. Marguet, Uniform sampling in a structured branching population,Bernoulli, 25, pp. 2649-2695, 2019.
[3] S. Méléard and V. Bansaye, Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Springer Cham, 2015.
[4] N. Giordano, F. Mairet, J.-L. Gouzé, J. Geiselmann, and H. de Jong, Dynamical allocation of cellular resources as an optimal control problem: Novel insights into microbial growth strategies, PLoS Comput Biol, 12, p. e1004802, 2016.
[5] A. Pavlou, E. Cinquemani, C. Pinel, N. Giordano, M. Van Melle-Gateau, I. Mihalcescu, J. Geiselmann and H. de Jong. Single-cell data reveal heterogeneity of investment in ribosomes across a bacterial population. Nat Commun 16, 285 (2025).
Compétences
Interested candidates are expected to have a solid preparation in dynamical system / stochastic process modelling and analysis and some familiarity with scientific programming, and to be interested in biological applications and data processing.
Avantages
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural and sports events and activities
- Access to vocational training
- Social security coverage under conditions
Rémunération
2788 € gross salary / month

Offres similaires
Data Scientist Expérimenté H/F
-
Probayes
-
Montbonnot-Saint-Martin - 38
-
CDI
-
1 Octobre 2025
Data Scientist - Docteur en Sciences H/F
-
Probayes
-
Montbonnot-Saint-Martin - 38
-
CDI
-
1 Octobre 2025
Ingénieur Développeur Logiciel Python Grenoble H/F
-
Probayes
-
Montbonnot-Saint-Martin - 38
-
CDI
-
1 Octobre 2025
Recherches similaires
Déposez votre CV
Soyez visible par les entreprises qui recrutent à Grenoble.
Chiffres clés de l'emploi à Grenoble
- Taux de chomage : 11%
- Population : 158198
- Médiane niveau de vie : 21170€/an
- Demandeurs d'emploi : 15420
- Actifs : 75857
- Nombres d'entreprises : 14581
Sources :


Un site du réseaux :